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Monte Carlo simulation calculations for the mean-square end-to-end distance
and second virial coefficient for model linear and star polymers composed of
hard spheres with square-well attractions are presented. For these polymers,
two types of crossover behavior are observed: (i) crossover from the Gaussian
chain to the Kuhnian chain limits and (ii) crossover from the semiflexible chain
to the Kuhnian chain limits. A crossover theory for the properties of dilute
linear and star polymers under good solvent conditions is presented. This model
directly relates the properties of the monomer–monomer interaction to the
renormalized parameters of the theory. The predictions of the crossover theory
are in good agreement with simulation data. A new equation of state for linear
and star polymers in good solvents is presented. The equation of state captures
the scaling behavior of polymer solutions in the dilute/semidilute regimes and
also performs well in the concentrated regimes, where the details of the
monomer–monomer interactions become important. This theory is compared to
Monte Carlo simulation data for the volumetric behavior of tangent hard-
sphere polymers.
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1. INTRODUCTION

For sufficiently high molecular weights, the properties of dilute polymer
solutions, under good solvent conditions, exhibit universal scaling behavior
[1]. For example, the mean square end-to-end distance OR2P has the form

OR2P=AN2n (1)

where N is the degree of polymerization, n is a univeral scaling exponent,
and A is a coefficient that depends on the details of the polymer. In the
absence of excluded-volume interactions, n=0.5, and the polymer exhibits
Gaussian statistics. When excluded-volume interactions are present, n=0.588,
and the polymer exhibits Kuhnian statistics [1]. Another property that
exhibits scaling behavior is the pressure p of a polymer system, which is
given by [1]

p
kBTcp

=Z(cpNdn) (2)

where kB is the Boltzmann constant, T is the absolute temperature of the
system, cp is the concentration of polymer in solution, and d is the dimen-
sionality of space. We develop a crossover theory for dilute linear and star
polymer solutions, similar in form to crossover theories for critical phe-
nomena in simple fluids. We then compare our results with Monte Carlo
simulations for a simple model polymer to test the accuracy of our theory.
In addition, we are able to ascertain a precise relation between the renor-
malized parameters of our theory and the microscopic parameters of our
model polymer. The remainder of the paper is organized as follows. First,
in Section 2, we provide a brief review of polymer field theory and develop
a crossover theory for dilute polymer solutions. In Section 3, we present the
theory for the thermodynamics of dilute to concentrated polymer solutions.

2. DILUTE POLYMER SYSTEMS

The Edwards Hamiltonian provides a coarse-grained description of a
fully flexible polymer chain with excluded-volume interactions [2]. For
star polymers, this generalizes to [3]

H[R]=
1
2
C
f

a=1
F
SB

0
dta 1

“R(ta)
“ta
22+vB

2
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f
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0
dta F

SB

0
dt −cd(R(ta)−R(t

−

c))
(3)
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where d is the dimensionality of space, f is the number of arms on the star
polymer, SB is proportional to the molecular weight of each arm of the star
polymer, vB is an effective segment–segment interaction parameter that
measures the strength of the excluded-volume interaction, and R(ta) is the
position of ‘‘segment’’ ta on arm a of the star polymer. The first term
enforces the connectivity of the polymer, and the second term accounts for
excluded-volume interactions between ‘‘segments’’ of the polymer. Due to
the coarse-grained nature of the Edwards Hamiltonian, it is limited to
polymers with many statistical segments [1, 2]. Above the theta tempera-
ture, the two-body interaction constant vB > 0. In this case, the model is
not exactly solvable, and renormalized perturbation methods need to be
used (see Ref. 1 for details).
In this method, a general property Q is given by

Z−1Q (u) Q(u, S; L)=lim
aQ 0
QB(vB, SB; a) (4)

where a is a cutoff length for the model and L is the length scale at which
the property is measured. The function ZQ(u) and renormalized parameters
u=vBLE, where E=4−d, and S=Nl2/d of the Edwards Hamiltonian, are
chosen to absorb the divergences of the model as aQ 0. Note that the
values of the renormalized parameters u and S depend on L, but despite
this, the measurable properties of the system Q should be independent of
the length scale at which they are measured. This independence leads to the
renormalization-group equation, which relates the model parameters u and
S at length scale L to the parameters at length scale LR (uR and SR),
through the following equations [4]:

1−Y=ū(1− ū)− E/2 1L
2
R

L2
2E/2 YE/w (5)

SR
S
=(1−ū) (2−1/n)/w Y−(2−1/n)/w exp[−o(1− ū)+oY] (6)

where o=11ug/16, ū=u/ug, ūR=uR/ug, and Y=1−ūR is the crossover
function.
The best estimates of the exponents are n=0.5880 and w=0.790 [5].

The best estimate of the fixed point ug is ug=0.1771 [5]. An explicit form
of the crossover function depends on the match-point condition accepted in
the theory. Here we choose L2R=fSR, and the crossover function is written
in the form

(1−Y)2/E=N̄Y1/DeoY (7)
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where D=wn, N̄=fN/Ng, and Ng is given by

Ng=(ūL)−2 |1− ū |1/D eo(1− ū) (8)

where L−2=L2d/l2 is a system-dependent parameter. The crossover func-
tion Y has the following asymptotic limits:

YQ
˛1−e

o/2N̄1/2+·· · for N̄° 1
N̄−D[1−D(2+o) N̄−D+·· · ] for N̄± 1

(9)

When Y % 1, the excluded-volume interactions play a minor role, and the
polymer is nearly Gaussian. When Y° 1, the excluded-volume interac-
tions play a major role, and the polymer exhibits Kuhnian statistics. From
Eq. (9), the polymer exhibits Gaussian statistics when Ng ±N± 1. When
N ’ 1, the chain is too short for the Edwards Hamiltonian to apply, and
the statistics of the chain are no longer universal but, instead, depend
strongly on the details of the chain. When the polymer exceeds a critical
length, N±Ng, it exhibits Kuhnian statistics. This is in direct analogy to
systems near a second-order phase transition [6].
For these systems, mean-field critical behavior is observed when

Gi° y° 1, where y=|T/Tc−1|, T is the temperature of the system, Tc is
the critical temperature of the system, and Gi is the Ginzburg number.
Universal critical behavior is observed when y° Gi. Therefore, in dilute
polymer solutions, 1/N plays the role of y, and 1/Ng is analogous to the
Ginzburg number Gi. The connection between the excluded-volume inter-
action and the Ginzburg number has been discussed previously by other
authors [7]. The usefulness of the crossover function Y lies in the fact that
the properties of the polymer can be written as a universal function of Y,
independently of the details of the polymer. These details are contained in
the parameters ū and Ng. For example, the mean-square end-to-end dis-
tance OR2P can be written in terms of the crossover function as [8]

OR2P
Nl2
=aYR (10)

where the crossover function is

YR=[1+e1(1−Y)+e2(1−Y)2] Y−(2n−1)/DeoY (11)

the universal constants e1=−0.125 and e2=0.283 [4], and the amplitude
a is given by

a=|1− ū| (2n−1)/D e−o(1− ū) (12)
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We compare our theoretical predictions against simulations for model
polymers composed of rigidly bonded hard spheres. We model the star
polymers as being composed of rigidly bonded hard spheres of diameter s.
The f arms of the star polymer are all attached to a central ‘‘core’’ sphere.
Each arm consists of N spheres, and the bond length between each of the
spheres is l. A schematic drawing of a model star polymer is given in Fig. 1.
In Fig. 2, we plot the variation of the mean-square end-to-end and mean-
square center-to-end distances for polymers of various values of s/l as a
function of the number of spheres on the polymer N. The long-dashed line
represents the scaling relation given in Eq. (1) with A=0.792. The simula-
tion data for s/l > 0.447 lie above this curve, while the data for s/l <
0.447 lie below. The simulation data for s/l=0.447 lie directly on this curve.
If one were to fit an equation of the form

OR2P
l2
=AeffN2neff (13)

to the data for s/l > 0.447, one would find an effective exponent neff higher
than the theoretical value, n=0.5880, for finite chain lengths. As data for
longer and longer length chains are fitted, the effective exponent will gra-
dually decrease to the theoretical value n. For systems with s/l < 0.447,
the effective exponent is lower than the actual exponent and monotonically
increases to n with increasing chain length. When N̄± 1, OR2P can be
written in Wegner scaling form:

OR2P
l2
=A0N2n[1+A1N−D+·· · ] (14)

If one fits a Wegner-type equation to the data, theoretically, one expects
[4] to find a negative Wegner coefficient A1 if ū > 1 and a positive Wegner
coefficient if ū < 1. When ū=1, the Wegner correction vanishes, and there
is pure scaling behavior. When N̄° 1, the crossover function YR % 1, and
Eq. (10) reproduces the Gaussian limiting behavior.

OR2P
l2
=aN (15)

Therefore, the relationship between the dimensionless excluded-volume
parameter ū and the ratio s/l can be found from the condition that ū is, in
this case, proportional to the Fixman parameter (i.e., ū3 z3 (s/l)3).
In our previous work [4], we found empirically that the hard-sphere

chain most rapidly approaches the infinite molecular weight limit when
s/l=0.447. According to the crossover theory, this corresponds to u=ug.
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Fig. 1. Schematic drawing of a four-arm
(f=4) star polymer with N=5 spheres
per arm. The diameter of the spheres is
s, and the bond length is l. The shaded
sphere is the central ‘‘core’’ sphere.

Fig. 2. Mean-square end-to-end distance, OR2P, for various hard-
sphere chains: (i) s/l=1 (filled circles), (ii) s/l=0.548 (filled
triangles), (iii) s/l=0.447 (crosses), (iv) s/l=0.316 (open triangles),
and (v) s/l=0 (pluses), (vi) tetrahedral lattice chains [27] (diamonds),
(vii) sc lattice chains [28] (open circles), (viii) sc lattice chains [29]
(squares), (ix) Gaussian limit (short-dashed line), and (x) Kuhninan
limit (long-dashed line).

122 Lue and Kiselev



Therefore, the case s/l=0.447 corresponds to ū=1, s/l < 0.447 corre-
sponds to ū < 1, and s/l > 0.447 corresponds to ū > 1. Combining these
results with the fact that ū3 (s/l)3, we arrived at the relation [4]

ū=11.18 1s
l
23 (16)

For polymers composed of hard spheres with square-well attractions,
the expression for ū is slightly more complicated [9], involving also the
depth and width of the attractive well. The crossover function given in
Eq. (7) is based on an expansion that is valid for small values of the
parameter ū. It is accurate only in the case ū < 1. The case ū > 1 describes
the crossover behavior of a semiflexible polymer with excluded-volume
interactions. The Edwards Hamiltonian, which describes fully flexible
polymers, is no longer relevant, and a different Hamiltonian needs to be
employed (for example, see Ref. 10). We do not consider this situation.
For ū < 1, the crossover theory predicts that all polymer data for OR2P
can be collapsed to a single universal function, if rescaled properly. To
demonstrate this, we plot the variation of OR2P/(Na) with N̄ for polymers
with ū < 1 in Fig. 3. The symbols are the results of Monte Carlo simula-
tions, and the line is the theoretical crossover function. The data collapse

Fig. 3. Variation of the scaled mean-square end-to-end and center-to-
end distances with N̄ for polymers with ū < 1: (i) Monte Carlo simulation
data (symbols); (ii) crossover theory with e1=−0.125 and e2=0.283
(solid line).
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onto a single universal curve, that is well described by the theory. We
see the crossover from Gaussian behavior with OR2P3N when N̄° 1
to Kuhnian behavior with OR2P3N2n when N̄± 1. Another quantity of
interest is the penetration function Y, defined by [1]

Y=1 d
12p
2d/2 2B2

OR2gP
d/2 (17)

where B2 is the second virial coefficient between two polymers, and OR
2
gP is

the mean-square radius of gyration of the polymer.
For polymer solutions, the penetration function Y characterizes the

solvent quality and controls the crossover behavior of the osmotic pressure
in the dilute and semidilute regimes [1, 11]. The crossover expression for
the penetration function of a star polymer with f arms is given by [3, 9,
12, 13]

Y=
gd/2

8
(1−Y) 5a0+a1(1−Y)+a2(1−Y)

2

1+b1(1−Y)+b2(1−Y)2
6 (18)

where

g=
f2

3f−2

a0=53/32

a1=
1
2
ln 2+

7
48
+
13
8
(f−1)(f−2)
3f−2

b1=
1
4
(f−1)(15f−22)

3f−2
ln 2+19

8
ln 3−

7
4
ln 22 (f−1)(f−2)−1

2
ln f

a2=−0.087+2.643(f−1)(f−2)

b2=(0.946+0.213gd/2)(f−1)(f−2)

The form for the coefficients a2 and b2 was not obtained theoretically; it
was chosen in analogy with corresponding expressions for the coefficients
a1 and b1, with the requirement that the resulting expression for Yg(f)
increases monotonically with f to a finite value. Thus, our crossover model
is actually a phenomenologically ‘‘repaired’’ crossover function, exact to
second-order in E.
Under good solvent conditions, the penetration function for a star

polymer monotonically approaches a finite, asymptotic limiting value
Yg(f) as its molecular weight becomes infinitely large. This limiting value
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Yg(f) depends only on the number of arms in the star polymer and is
independent of the molecular details of the polymer (as long as it is in good
solvent conditions). A summary of Yg(f) as obtained from experimental,
computer simulation, and theoretical work is given in Table I of Ref. 14.
In Fig. 4, we plot the variation Y with the number of spheres per arm N
for three-arm (f=3) star polymers with various values of s/l. For poly-
mers with s/l < 0.447, Y gradually increases with molecular weight; for
s/l > 0.447, Y gradually decreases with molecular weight. Regardless of
the value of s/l, however, the penetration function approaches the same
asymptotic limit as the molecular weight becomes infinitely large. The
closer the value of s/l is to 0.447, the more rapidly the penetration func-
tion approaches its asymptotic value. Precisely at this critical value of s/l,
Y(f=3) remains roughly constant, nearly equal to its asymptotic value
Yg(f=3) for almost all molecular weights.
This same qualitative behavior is observed for linear polymers [4, 9,

15] and star polymers of differing number of arms. The value of s/l that
corresponds to ū=1 (i.e., s/l=0.447) is independent of the number of
arms f on the star polymer; however, the asymptotic limiting value Yg(f)
of the penetration function is dependent on f. Therefore, we find that ū=1
when s/l=0.447, independent of the number of arms on the star polymer.

Fig. 4. Variation of the penetration function with the degree of
polymerization N for three-arm stars: (i) s/l=0.3 (circles), (ii)
s/l=0.447 (squares), and (iii) s/l=1.0 (triangles).
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Table I. Monte Carlo Simulation Estimate of Yg

f Yg

1, 2 0.25±0.01
3 0.359±0.004
4 0.453±0.007
5 0.553±0.006
6 0.63±0.01
12 1.057±0.008
14 1.160±0.009
16 1.259±0.009
18 1.33±0.01

This is consistent with the value found from OR2P. Our Monte Carlo simu-
lation data for Yg(f) for star polymers are summarized in Table I and are
shown in Fig. 5. For f [ 6 these values are in good agreement with the
simulation data of Ref. 14, however, for f \ 12 our data lie systematically
above the simulation data of Ref. 14. We think that the data in Ref. 14 at
f=12 and 18 most likely correspond to finite-size stars under conditions
where ū < 1, for which Y has not yet approached Yg.
As a comparison, we also show in Fig. 5 the predictions obtained by

Douglas and Freed [13], given by the dashed–dotted line. The predictions
of Douglas and Freed are systematically higher than the simulation data,
and the difference between them increases dramatically for f \ 6. In the
limit fQ., Eq. (18) with the parameters found from a fit to the data of
Ref. 14 yields Yg(fQ.)=1.55, which is close to the hard-sphere limit
YHS=1.619 [16]. Roovers and co-workers suggest [17] that Yg(fQ.)
should be precisely equal to the penetration function for hard spheres;
however, others have pointed out that there is no justification that these
two values should be exactly the same [13]. Using Daoud–Cotton theory
[18], Ohno and co-workers [16] estimate Yg(fQ.)=2.13, which is
closed to the value Yg(.)=2.1 obtained with Eq. (18) with the parameters
found from a fit to our data. For a more accurate determination of Yg(.)
we need more data for f \ 18.
Figure 6 compares simulation data for 0.1 [ s/l < 0.447 to the rescaled

values of the penetration function, Ȳ=Y(N̄, f)/Yg(f), calculated with
Eq. (18). The predicted values of the penetration function are in fairly
good agreement with the simulation data; however, there are systematic
deviations. These systematic deviations can be eliminated if the experimen-
tal values of the parameter N̄ are rescaled by a factor of 3.5 (i.e., N̄exp=
3.5(fN/Ng)). This corresponds to choosing a match point of L2R=3.5fSR
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Fig. 5. Variation of the infinite molecular weight limit of the pene-
tration function Yg(f) for star polymers with f arms: (i) simulation
data (symbols), (ii) calculated values from Eq. (18) (solid line), and (iii)
calculated values of Douglas and Freed (dashed line).

Fig. 6. Variation of the rescaled penetration function Ȳ(N̄, f)=Y(N̄, f)/
Yg(f) with the rescaled degree of polymerization N̄=fN/Ng: (i) simu-
lation data (open symbols), (ii) rescaled simulation data (filled symbols),
and (iii) calculated values (lines).
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in Eq. (5), rather than L2R=fSR. After this rescaling, excellent agreement
between the simulation data (filled symbols in Fig. 6) and the calculated
values of the penetration function is obtained over the entire range of N̄.

3. POLYMER SOLUTIONS

In the dilute and semidilute regimes, the connectivity of the polymers
induce long-range correlations between the monomer segments. The details
of the monomer–monomer interactions do not play a major role; thus, a
coarse-grained description of the polymers, such as the Edwards Hamilto-
nian [2, 3], can be used. It can be shown [19, 20] that, to one-loop order,
the Helmholtz free energy F of a linear or star polymer solution, in the
dilute to semidilute regimes, is given by

F
kBTV

=cp 5ln
cp
Q
−16+cpX exp 5−

oȲ

4
A(X)6 (19)

where V is the volume of the system, Q is the partition function of an
isolated, self-interacting chain, cp is the number density of polymer mole-
cules in the system, X=B2cp, Ȳ=Y(N, f)/Yg(f) is a scaled penetration
function, o=(2−dn)/(dn−1) % 0.3089 is a universal constant, and A(x)=
x−2[2x+6x2−(1+2x)2 ln(1+2x)]. The corresponding expression for the
compressibility factor Z is

Z=1+X 51+oȲ
2
B(X)6 exp 5−oȲ

4
A(X)6 (20)

where B(x)=x−2[2x+2x2−(1+2x) ln(1+2x)]. This free-energy model
was developed by combining ‘‘infinite’’ order expressions with first order
calculations [19], and as a result, it agrees with the theoretical scaling
results [1, 5].
In this theory, the polymer architecture does not enter explicitly into

the thermodynamic properties of the system. The only distinction between
different architectures is the asymptotic limit of the penetration function
Yg. All polymers, regardless of architecture, should approach the same
limiting form of the equation of state in the dilute/semidilute regimes
as the molecular weight of the polymer becomes infinitely high. Recall
that for stiff polymers, Ȳ > 1, and it decreases gradually to Ȳ=1 as the
molecular weight increases. For fully flexible polymers, Ȳ < 1, and it
increases gradually as the molecular weight increases. Therefore, for stiff
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Fig. 7. Deviation of the equation of state from the infinite molecular weight limit: (i)
Ȳ=1, infinite molecular weight limit (solid line), (ii) Ȳ > 1, stiff polymer of finite
molecular weight (dashed lines), and (iii) Ȳ < 1, flexible polymer of finite molecular
weight (dotted lines).

polymers in the dilute/semidilute regime, we expect the compressibility
factor to decrease to the infinite molecular weight limit as the molecular
weight of the polymer increases, while for flexible polymers, we expect the
compressibility factor to increase. This is shown in Fig. 7, where the dashed
lines represent polymer systems with Ȳ > 1, the dotted lines represent
systems with Ȳ < 1, and the solid line is a system with Ȳ=1 (infinite
molecular weight limit). In the concentrated regime, where the details of
the monomer–monomer interactions become important, the expression for
the Helmholtz free energy given in Eq. (19) breaks down.
In Ref. 19, we demonstrated how the renormalization procedure used in

the polymer field theory could be applied to a liquid-state theory approach,
which includes details of the monomer–monomer interactions. This led to the
following expression for the residual Helmholtz free energyF res:

bF res(T, cp)=bF
res
ref(T, Ncp)+

V
2
N2f̂(0) c2p+VcpX̄ exp 5−

oȲ

4
A(X̄)6

(21)
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where F resref is the residual Helmholtz free energy of a disconnected
monomer fluid, X̄=B2cpC1, C1=ĥref(0)/f̂(0), f̂(0) is the zero-wave vector
value of the Mayer f-function of the monomer–monomer interaction, and
ĥref(0) is the zero-wave vector value of the total correlation function of a
disconnected monomer fluid. The equation of state is given by

Z=1+NZresref(T, Ncp)+
1
2
f̂(0) N2cp

+X̄(1+C2) 51+
oȲ

4
B(X̄)6 exp 5−oȲ

4
A(X̄)6 (22)

where Z resref is the residual compressibility factor for the disconnected
monomer fluid, and C2=“ ln C1/“ ln(Ncp). Note that this expression
inherently assumes that f̂(0) < 0, which corresponds to polymers in good
solvent conditions. In addition, this expression assumes that the polymer
molecular weight is high. This expression is valid for polymer solutions in
the dilute to concentrated regimes.
We compare our theory with simulation data for tangent hard-sphere

chains. For this system, the reference fluid is the hard-sphere fluid, which is
well described by the Carnahan–Starling equation of state [21],

Z resHS=
2y(2−y)
(1−y)3

(23)

where y=ps3cp/6 is the fraction of space occupied by the spheres. For this
equation of state, the functions C1 and C2 are given by

C1=
1−y/4

1+4y+4y2−4y3+y4
(24)

and

C2=−
y(17+32y−52y2+24y3−3y4)
(4−y)(1+4y+4y2−4y3+y4)

(25)

In Fig. 8, we plot the equation of state of fluids composed of tangent hard-
sphere chains with N=51 and N=201 in the concentrated regime. The
symbols are the results from computer simulations by various researchers.
The solid lines are the predictions of Eq. (22), and the dashed lines are the
predictions of the commonly used thermodynamic perturbation theory
(TPT) equation of state for tangent hard-sphere chains [22]. The values
for the second virial coefficient and penetration function used in Eq. (22)
were taken from Refs. 19 and 23.

130 Lue and Kiselev



Fig. 8. Equation of state for tangent hard-sphere chains of various degrees of poly-
merization. The symbols are the results of computer simulations for (i) N=51, Ref. 30
(circles), and (ii) N=201, Ref. 30 (squares). The solid lines are the predictions of Eq. (22),
and the dashed lines are the predictions of the TPT equation of state.

For packing fractions y [ 0.3, the predictions of Eq. (22) are in
slightly better agreement than the TPT equation of state with the simula-
tion data. Even for chains as short as N=4, the crossover equation of state
still yields reasonable results [19]. At higher packing fractions, the predic-
tions of Eq. (22) become slightly worse than the TPT equation of state,
although they both overpredict the pressure of the system. In Fig. 9, we
plot the equation of state of tangent hard-sphere chains of different
lengths, from the dilute to concentrated regimes. The symbols are the
results of the Monte Carlo simulations, and the lines are the predictions
of Eq. (22). As the molecular weight of the chain becomes infinite, the
compressibility factor approaches a universal function of B2cp, given by the
dashed–dotted line. The open symbols, which represent systems in the
dilute/semidilute regimes, where y° 1, lie approximately on a single,
universal curve. This behavior is also observed experimentally for polymers
in good solvents [1]. As the fraction of space occupied by the monomers
increases, the equation of state deviates from the universal curve: as N
decreases, the deviation occurs at a lower value of X. As can be seen, the
predictions of Eq. (22) agree well with the simulation data.
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Fig. 9. Equation of state of tangent hard-sphere chains in the dilute to concentrated
regimes. The symbols are the results of computer simulations for N=100 (circles), N=200
(squares), and N=500 (triangles). The open symbols represent systems in the dilute/semi-
dilute regimes, and the filled symbols represent systems in the concentrated regime. The
lines are the predictions of Eq. (22) for N=100 (solid line), N=200 (dashed line), N=500
(dotted line), and NQ. (dashed–dotted line).

In Fig. 10, we compare the predictions of the TPT equation of state
for dilute/semidilute tangent hard-sphere systems with Monte Carlo sim-
ulation data. In the dilute and semidilute regions, the TPT equation of
state overpredicts the pressure of the system, and the results steadily
worsen with decreasing polymer concentration and with increasing N.
This can be traced to the fact that the TPT equation possesses a second
virial coefficient B2 which scales incorrectly with the degree of poly-
merization (B2 3N2 rather than B2 3Ndn) and, therefore, overpredicts the
second virial coefficient for large molecular weights. As a result, the TPT
equation of state does not yield the correct universal form for dilute to
semidilute solutions of high molecular weight polymers [see Eq. (20)].
This conclusion applies to all equations of state that possess a second
virial coefficient that scales with molecular weight as B2 3N2. Thus, these
types of equations of state cannot properly describe the behavior of dilute
to semidilute polymer systems.
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Fig. 10. Equation of state of tangent hard-sphere chains in the dilute to concentrated
regimes. The symbols are the results of computer simulations for N=100 (circles), N=200
(squares), and N=500 (triangles). The open symbols represent systems in the dilute/semi-
dilute regimes, and the filled symbols represent systems in the concentrated regime. The
lines are the predictions of the TPT equation of state for N=100 (solid line), N=200
(dashed line), and N=500 (dotted line).
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